Table 2. Selected geometric parameters $\left(A^{\circ},^{\circ}\right)$

$\mathrm{Pl}-04$	1.582 (3)	P3-08	1.593 (3)
P1-05	1.609 (3)	P3-011	1.599 (4)
Pl-06	1.475 (3)	P3-012	1.484 (3)
P1-07	1.484 (3)	P3-013	1.475 (4)
P2-05	1.585 (3)	P4-O11	1.606 (4)
$\mathrm{P} 2-\mathrm{O} 8$	1.595 (3)	P4-014	1.584 (3)
P2-09	1.483 (4)	P4-015	1.473 (4)
P2-O10	1.478 (4)	$\mathrm{P} 4-\mathrm{O} 16$	1.480 (3)
O4-P1-O5	102.4 (2)	O11-P3-O12	108.9 (2)
O4-P1-06	105.4 (2)	O11-P3-O13	107.8 (2)
O4-P1-07	111.2 (2)	O12-P3-O13	119.8 (2)
O5-P1-06	111.2 (2)	O11-P4-O14	101.1 (2)
O5-P1-07	105.7 (2)	O11-P4-015	111.7 (2)
O6-P1-07	119.6 (2)	O11-P4-016	107.8 (2)
O5-P2-08	99.1 (2)	O14-P4-O15	105.4 (2)
O5-P2-09	108.4 (2)	O14-P4-016	110.8 (2)
$\mathrm{O} 5-\mathrm{P} 2-\mathrm{O} 10$	110.5 (2)	$\mathrm{O} 15-\mathrm{P} 4-\mathrm{O} 16$	118.7 (2)
O8-P2-09	109.5 (2)	$\mathrm{Pl}-\mathrm{O} 4-\mathrm{C} 10$	121.1 (3)
$\mathrm{O} 8-\mathrm{P} 2-\mathrm{O} 10$	110.5 (2)	$\mathrm{P} 1-\mathrm{O} 5-\mathrm{P} 2$	130.7 (2)
O9-P2-010	117.3 (2)	$\mathrm{P} 2-\mathrm{O}-\mathrm{P} 3$	128.4 (2)
O8-P3-O11	100.3 (2)	P3-O11-P4	129.2 (2)
$\mathrm{O} 8-\mathrm{P} 3-\mathrm{O} 12$	109.7 (2)	$\mathrm{P} 4-\mathrm{O} 14-\mathrm{C} 20$	122.2 (3)
$\mathrm{O} 8-\mathrm{P} 3-\mathrm{O} 13$	108.5 (2)		
$\mathrm{Pl}-\mathrm{O4}-\mathrm{C} 10-\mathrm{C} 9$	165.9 (3)	P3-O11-P4-O14	-159.4 (3)
P1-05-P2-08	74.7 (3)	P4-O11-P3-O8	105.4 (3)
$\mathrm{P} 2-\mathrm{O}-\mathrm{P} 1-04$	-135.0 (3)	P4-O14-C20-C19	157.8 (3)
$\mathrm{P} 2-\mathrm{O}-\mathrm{P} 3-\mathrm{O} 11$	-124.8 (3)	$\mathrm{O} 5-\mathrm{Pl}-\mathrm{O} 4-\mathrm{Cl} 0$	-67.3 (4)
$\mathrm{P} 3-\mathrm{O} 8-\mathrm{P} 2-\mathrm{O} 5$	-164.3 (3)	$\mathrm{O} 11-\mathrm{P} 4-\mathrm{O} 14-\mathrm{C} 20$	-65.3 (4)

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN PROCESS (Molecular Structure Corporation, 1993). Program(s) used to solve structure: TEXSAN; SAPI91 (Fan, 1991). Program(s) used to refine structure: TEXSAN LS. Molecular graphics: TEXSAN; ORTEPII (Johnson, 1976). Software used to prepare material for publication: TEXSAN FINISH.

We thank Dr Motoo Shiro (Rigaku X-ray Research Laboratory) for his assistance in the preparation of this manuscript.

[^0]
References

Altona, C. \& Sundaralingam, M. (1972). J. Am. Chem. Soc. 94, 82058212.

Cromer, D. T. \& Waber, J. T. (1974). International Tables for Xray Crystallography, Vol. IV, Table 2.2A, pp. 72-98. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Fan, H.-F. (1991). SAP191. Structure Analysis Programs with Intelligent Control. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Lüthje, J. (1989). Klin. Wochenschr. 67, 317-327.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1993). TEXSAN. Single-Crystal Structure Analysis Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.

Nakajima, H., Tomioka, I., Kitabatake, S., Dombou, M. \& Tomita, K. (1989). Agric. Biol. Chem. 53, 615-623.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.

Acta Cryst. (1996). C52, 340-342
Trimethylammonium Trichlorostannate(II)
Joan Halfpenny
Department of Chemistry and Physics, Nottingham Trent University, Clifton Lane, Nottingham NG11 8NS, England
(Received 6 April 1995; accepted 17 July 1995)

Abstract

The NHMe_{3}^{+}and SnCl_{3}^{-}ions both have approximate threefold symmetry and lie on a mirror plane. The anion is pyramidal with $\mathrm{Sn}-\mathrm{Cl} 2.515$ (4) and $2.500(3) \AA$ and $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl} 90.6$ (2) and 89.1 (1) ${ }^{\circ}$. The pseudothreefold axes of the ions are superimposed with close $\mathrm{Cl} \cdots \mathrm{H}$ contacts of 2.61 (7) and 2.71 (6) \AA.

Comment

The structure of the title compound, (I), is ionic with SnCl_{3}^{-}and NHMe_{3}^{+}lying on a mirror plane. The molecular dimensions (Table 2) show that the trimethylammonium ion has the usual tetrahedral shape and that the trichlorostannate ion is pyramidal. Both ions possess non-crystallographic threefold symmetry, and an unusual feature of the structure is the coincidence of their threefold axes (Fig. 1). The axial hydrogen of the trimethylammonium ion is aligned in the direction of the Cl atoms (Fig. 2).

(I)

The $\mathrm{Cl} \cdots \mathrm{H}$ distances (Table 3) are significantly less than the sum of the van der Waals distances, indicating weak bond formation. A search of the Cambridge Structural Database (CSD) (Allen et al., 1991) revealed 11 other organometallic structures (CSD codenames ENCOSN, PECOTB20, PPECOT20, BITXUX, DOWCIJ, DUSWOD, GEHTUI, KAHWAR, SIGMEA, SIGNIF and VOGRAK) involving the SnCl_{3}^{-}ion. In

Fig. 1. Projection of the structure along the $\mathrm{N}-\mathrm{Sn}$ direction showing superposition of the ions. H6 is wholly obscured by N. Atoms bearing the suffix A are related to those without this suffix by the symmetry operation $-x, y, z$. The mirror plane passes through Cl , $\mathrm{Sn}, \mathrm{N}, \mathrm{H} 6, \mathrm{Cl}$ and H 4 .

Fig. 2. Projection of the structure onto (100) showing the unit cell with half the contents omitted for clarity.
all of these structures except one, the mean $\mathrm{Sn}-\mathrm{Cl}$ distance was significantly less and the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angle was significantly greater than in the present structure, the mean values over the ten structures being $\mathrm{Sn}-\mathrm{Cl}$ $=2.47 \AA$ and $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}=93.5^{\circ}$. The one exception was GEHTUI, tert-butylammonium trichlorotin (Veith, Jarczyk \& Huch, 1988): although there is no coincidence of the threefold axes of the ions as found in the present structure, in both structures the formation of $\mathrm{Cl} \cdots \mathrm{H}$ interionic bonds is coupled with lengthening of the $\mathrm{Sn}-\mathrm{Cl}$ distances due to electron withdrawal. tertButylammonium trichlorotin has one extremely short $\mathrm{Cl} \cdots \mathrm{H}($ ammonium $)$ distance $(2.29 \AA)$ and a further short contact of $2.42 \AA$ between this H atom and Cl from a different anion. The $\mathrm{Sn}-\mathrm{Cl}$ bonds are long (2.578, $2.527,2.521 \AA$). In the present structure the attraction of
the three Cl atoms to the axial H 6 may contribute to the reduction of $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angles; other slightly longer $\mathrm{Cl} \cdots \mathrm{H}$ approaches (Table 3) may also be significant. It is interesting that the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angles in the present structure are all similar whereas in tert-butylammonium trichlorotin (where unsymmetrical $\mathrm{Cl} \cdots \mathrm{H}$ interactions are present) the $\mathrm{Cl}-\mathrm{Sn}-\mathrm{Cl}$ angles vary between 88.2 and 93.5°.

Experimental

The crystals were supplied by Dr K. B. Dillon as part of a study of tin complexes (e.g. Dillon, Halfpenny \& Marshall, 1983, 1985) and were suitable without further recrystallization. The density D_{m} was measured by flotation.

Crystal data

$\left[\mathrm{NH}\left(\mathrm{CH}_{3}\right)_{3}\right]\left[\mathrm{SnCl}_{3}\right]$
$M_{r}=285.17$
Orthorhombic
Cmc 21
$a=9.53$ (1) \AA
$b=8.31$ (1) \AA
$c=12.39$ (1) \AA
$V=981$ (3) \AA^{3}
$Z=4$
$D_{x}=1.930 \mathrm{Mg} \mathrm{m}^{-3}$
$D_{m}=1.921 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Stoe Stadi-2 two-circle diffractometer
Variable ω scans
Absorption correction: by integration from
crystal shape (SHELX76;
Sheldrick, 1976)
$T_{\text {min }}=0.330, T_{\text {max }}=$ 0.886

583 measured reflections
580 independent reflections
552 observed reflections
$[I>3 \sigma(I)]$

Refinement

Refinement on F
$R=0.031$
$w R=0.031$
$S=0.906$
552 reflections
50 parameters
H -atom treatment: see below

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 15 reflections
$\theta=5-25^{\circ}$
$\mu=3.11 \mathrm{~mm}^{-1}$
$T=286 \mathrm{~K}$
Thin plate, tabular on (010)
$0.56 \times 0.44 \times 0.039 \mathrm{~mm}$
Pale yellow

$$
\begin{aligned}
& R_{\text {int }}=0.017 \\
& \theta_{\text {max }}=30.0^{\circ} \\
& h=0 \rightarrow 11 \\
& k=0 \rightarrow 10 \\
& l=0 \rightarrow 16
\end{aligned}
$$

1 standard reflection per layer monitored every 20 reflections
intensity decay: $\leq 5 \%$ (corrected by interpolation)

Table 1. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2}) $U_{\text {iso }}$ for N and $\mathrm{C} ; U_{\mathrm{eq}}=(1 / 3) \sum_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathrm{a}_{i} \cdot \mathbf{a}_{j}$ for Sn and Cl atoms.

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Sn	0	$0.0390(1)$	$0.2500 \dagger$	$0.0596(5)$
Cl 1	0	$0.0193(5)$	$0.4525(3)$	$0.077(4)$
Cl 2	$0.1840(3)$	$0.2532(3)$	$0.2572(5)$	$0.085(2)$

Unit weights applied
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.65 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.45 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors
from SHELX76

	0	$0.565(1)$	$-0.027(1)$	$0.052(3)$
N	0	$0.578(2)$	$0.043(1)$	$0.12(1)$
C 2	$0.117(2)$	$0.411(3)$	$-0.082(2)$	$0.11(1)$

\dagger Coordinate fixed to define origin.
Table 2. Selected bond lengths $\left(\AA^{\circ}\right)$ and angles $\left({ }^{\circ}\right)$

$\mathrm{Sn}-\mathrm{Cl1}$	$2.515(4)$	$\mathrm{N}-\mathrm{C} 1$	$1.45(2)$
$\mathrm{Sn}-\mathrm{Cl} 2$	$2.500(3)$	$\mathrm{N}-\mathrm{C} 2$	$1.42(2)$
$\mathrm{Cll}-\mathrm{Sn}-\mathrm{Cl2}$	$90.6(2)$	$\mathrm{C} 1-\mathrm{N}-\mathrm{C} 2$	$111(1)$
$\mathrm{Cl} 2-\mathrm{Sn}-\mathrm{Cl}^{\mathrm{i}}$	$89.1(1)$	$\mathrm{C} 2-\mathrm{N}-\mathrm{C}^{\prime}$	$104(2)$

Symmetry code: (i) $-x, y, z$.
Table 3. Contact distances (\AA)

$\mathrm{C} 11^{1} \cdots{ }^{\text {H }}{ }^{\text {ii }}$	2.61 (5)	$\mathrm{Cl1}^{1} \cdots \cdot \mathrm{H} 4{ }^{\text {¹' }}$	2.78 (5)
$\mathrm{C} 12^{1} \cdots \cdot{ }^{10}{ }^{\text {i }}$	2.71 (6)	$\mathrm{Cl2} \cdots \mathrm{H1}{ }^{11}$	2.78 (6)

Symmetry codes: (i) $x,-y, \frac{1}{2}+z$; (ii) $x, 1-y, z-\frac{1}{2}$; (iii) $x,-y, z-\frac{1}{2}$.
Intensity measurements were made with a two-circle diffractometer employing equi-inclination Weissenberg geometry. The angle θ^{\prime} is the projection of θ onto the equatorial plane. The crystal was set to rotate around the a axis. A separate standard reflection was chosen for each layer. During structure refinement, interlayer scale factors were refined and thereafter fixed. The structure was solved by the use of Patterson and difference syntheses. During refinement H atoms were included at calculated positions with individually refined $U_{\text {iso }}$. Anisotropic displacement parameters were allowed for Sn and Cl only, with isotropic refinement of N and C .

The polarity of the structure was established by competitive refinement. The chosen polarity had a significantly lower conventional R value (0.0314 versus 0.0365), smaller residuals in the final ΔF synthesis and lower uncertainties in the refined parameters.

Data reduction: DATR (Small, 1977). Program(s) used to solve structure: SHELX76 (Sheldrick, 1976), Patterson. Program(s) used to refine structure: SHELX76. Molecular graphics: SNOOPI (Davies, 1983).

I acknowledge the use of the Cambridge Structural Database (Allen et al., 1991).

Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry have been deposited with the IUCr (Reference: BM1018). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Allen, F. H., Davies, J. E., Galloy, J. J., Johnson, O., Kennard, O., Macrae, C. F., Mitchell, E. M., Mitchell, G. F., Smith, J. M. \& Watson, D. G. (1991). J. Chem. Inf. Comput. Sci. 31, 187-204.
Davies, K. (1983). SNOOPI. Program for Drawing Crystal and Molecular Diagrams. University of Oxford, England.
Dillon, K. B., Halfpenny, J. \& Marshall, A. (1983). J. Chem. Soc. Dalton Trans. pp. 1091-1094.
Dillon, K. B., Halfpenny, J. \& Marshall, A. (1985). J. Chem. Soc. Dalton Trans. pp. 1399-1403.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge England.
Small, R. W. H. (1977). DATR. Program for Reducing Raw Stadi-2 Data to Intensities. University of Lancaster, England.
Veith, M., Jarczyk, H. M. \& Huch, V. (1988). Chem. Ber. 121, 347355.

The Role of C-H. . O Bonds in Stabilizing 3-Furancarboxylic Acid and its Complexes with Calcium and Strontium

Beata Paluchowska, ${ }^{a}$ Jan K. Maurin ${ }^{a}$ and Janusz Leciejewicz ${ }^{b}$
${ }^{a}$ Institute of Atomic Energy, 05-400 Otwock-Świerk, Poland, and ${ }^{b}$ Institute of Nuclear Chemistry and Technology, Dorodna 16, 03-195 Warsaw, Poland
(Received 7 December 1994; accepted 6 March 1995)

Abstract

The crystal structures of 3-furancarboxylic acid, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{O}_{3}$, and both its calcium and strontium complexes, catena-poly[diaquacalcium- μ-(3-furancarboxyl-ato- $\left.O, O^{\prime}: O\right)$ - μ-aqua 3 -furancarboxylate], $\left[\mathrm{Ca}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{3}\right)\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{3}\right)$, and catena-poly[diaquastrontium-μ-(3-furancarboxylato- $O, O^{\prime}: O$)- μ-aqua 3 -furancarboxylate], $\left[\mathrm{Sr}\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)_{3}\right]\left(\mathrm{C}_{5} \mathrm{H}_{3} \mathrm{O}_{3}\right)$, respectively, are presented. The differences and similarities in the hydrogen-bonding schemes of the title acid and 2 -furancarboxylic acid are discussed, and the importance of $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds in the crystal packing of 3furancarboxylic acid and its strontium and calcium complexes is highlighted.

Comment

The determination of the crystal structure of 3 -furancarboxylic acid, (I), has been performed as an introductory step in the study of coordination compounds in which it acts as a ligand or an anion.

(I)

The crystals of 3 -furancarboxylic acid are composed of centrosymmetric hydrogen-bonded dimers, forming approximately planar layers of molecules parallel to the (10 $\overline{4}$) plane (Fig. 1). The two O3-H3 \cdots O2 hydrogen bonds between the carboxy O atoms, which are responsible for the formation of the dimer, have a

[^0]: Lists of structure factors, anisotropic displacement parameters, H atom coordinates and complete geometry, including contact distances, have been deposited with the IUCr (Reference: ASI187). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

